Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

image segmentation: type–2 fuzzy possibilistic c-mean clustering approach

image segmentation is an essential issue in image description and classification. currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. moreover, there are many uncertainties and vagueness in images, which crisp clustering and even type-1 fuzzy clustering could not handle. hence, type-...

متن کامل

An Improved Type-2 Possibilistic Fuzzy C-Means Clustering Algorithm with Application for MR Image Segmentation

This paper presents a new clustering algorithm named improved type-2 possibilistic fuzzy c-means (IT2PFCM) for fuzzy segmentation of magnetic resonance imaging, which combines the advantages of type 2 fuzzy set, the fuzzy c-means (FCM) and Possibilistic fuzzy c-means clustering (PFCM). First of all, the type 2 fuzzy is used to fuse the membership function of the two segmentation algorithms (FCM...

متن کامل

Type-II Fuzzy Possibilistic C-Mean Clustering

Fuzzy clustering is well known as a robust and efficient way to reduce computation cost to obtain the better results. In the literature, many robust fuzzy clustering models have been presented such as Fuzzy C-Mean (FCM) and Possibilistic C-Mean (PCM), where these methods are Type-I Fuzzy clustering. Type-II Fuzzy sets, on the other hand, can provide better performance than Type-I Fuzzy sets, es...

متن کامل

Interval Type-2 Fuzzy Neural System Based Control with Recursive Fuzzy C-Means Clustering

This paper focuses on the design of a novel control approach. Its contribution to the existing literature is that in the design of an interval type-2 fuzzy neural system, recursive fuzzy c-means clustering algorithm is used and the designed algorithm is applied in control applications. The center and the standard deviation values of the interval type-2 Gaussian membership functions at the antec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Korean Institute of Intelligent Systems

سال: 2017

ISSN: 1976-9172

DOI: 10.5391/jkiis.2017.27.2.099